FABRICATION AND CHARACTERIZATION OF MICRO AND NANO-STRUCTURE FOR BIOLOGICAL APPLICATION
FABRICATION AND CHARACTERIZATION OF MICRO AND NANO-STRUCTURE FOR BIOLOGICAL APPLICATION
ABSTRACT
Biotechnology plays a key role in the advancement and improvement in the health care and pharmaceutical industries. According to the importance of micro and nanostructures in biological applications, this thesis focuses on the fabrication and characterization of micro and nanostructures. The fabrication of the micro and nanostructures were carried out by electron beam lithography (EBL) and reactive ion etching (RIE) methods.
In the first phase of this work, SiO2 micropits (holes) were fabricated using EBL and RIE processes. The pattern was defined on a polymethyl methacrylate (PMMA) resist layer after the optimization of EBL parameters. The effect of different etchant gases, RF power, process pressure and etching duration were investigated during pattern transfer onto SiO2 substrate. The results showed that two different gases mixtures namely; CHF3/O2 and CHF3/Ar, during RIE etching process produced different morphology. The smooth SiO2 surface with 0.9 nm rms roughness was achieved using the CHF3/Ar etchant gases at 8 mTorr of process pressure and 150 W of RF power.
In the second phase of this work, SiO2 nanostructures were successfully fabricated using only RIE process. In this technique, the PMMA layer on the SiO2 surface was used as a polymeric material to produce self-formed masks during CHF3/Ar RIE process. The results show that after 6 min of duty cycle etching, the SiO2 surface was textured with ring shape morphology. The technique employed in the fabrication of these nano structures has a huge potential in providing a simple method for surface texturing of numerous biological devices and for attachment of biomolecules and cells.
In the final phase of this work, a negative profile of Si microchannel was fabricated by using EBL and RIE processes, which acts as a mold for subsequent fabrication of a polydimethylsiloxane (PDMS) microchannel. A PDMS microchannel replicated from the master mold was treated using a simple air plasma method to increase the surface energy for subsequent bonding process and liquid delivery. The procedure included an increase in the plasma durations from 10 s to 30 s, which reduced the water contact angles from 105º to 8º. This lead to the improvement of surface wettability for facilitating liquid delivery inside the PDMS microchannel. Meanwhile, the PDMS plasma treated microchannel was easily bonded to
the glass substrate for the fabrication of a microfluidic device. The results showed that the microchannel’s roof collapse when slight pressure was imposed on the microchannel, which lead to the formation of nanoslits with 830 nm in width and 170 nm in height. These microfluidic devices were used for capillary migration of DNA molecules.
-DNA molecules were driven inside the microfluidic devices (microchannel and nanoslits) -DNA molecules were captured by fluorescent microscope. The results shows that DNA is stretched by a combination of the force of capillary tension that pulls DNA solution into the channel, and confinement of them in the -DNA molecules in the nanoslits were measured between 8 and 20 μm in length, which is about a 40%-100% extension of its full length. The results are quite useful for the microfluidics fabrication community which providing a cost-effective, simple, and versatile approach.
FABRIKASI DAN PENCIRIAN STRUKTUR MIKRO/NANO UNTUK PENGGUNAAN KAJIHAYAT
ABSTRAK
Bioteknologi memainkan peranan penting dalam kemajuan dan peningkatan dalam penjagaan kesihatan dan industri farmaseutikal. Menurut kepentingan mikro dan nano dalam aplikasi biologi, tesis ini memberi tumpuan kepada fabrikasi dan pencirian mikro dan nano. Fabrikasi mikro dan nano telah dijalankan oleh litografi alur elektron (EBL) dan punaran ion reaktif (RIE).
Dalam fasa pertama kerja ini, Silikon dioksid (SiO2) micropits (lubang) telah direka menggunakan EBL dan proses RIE. Corak ini ditakrifkan pada lapisan rintaugan methacrylate polymethyl (PMMA) selepas pengoptimuman parameter EBL. Kesan punar gas-gas berbeza, kuasa RF, tekanan dan tempoh proses punaran telah disiasat semasa pemindahan corak ke substrat SiO2. Hasil kajian menunjukkan bahawa dua gas campuran yang berbeza iaitu; CHF3/O2 dan CHF3/Ar, semasa proses punaran RIE dihasilkan morfologi yang berbeza. Lancar SiO2 permukaan dengan 0.9 nm rms kekasaran telah dicapai menggunakan CHF3/Ar punar gas pada 8 mTorr tekanan proses dan 150 W kuasa RF.
Dalam fasa kedua karya ini, SiO2 nano telah berjaya direka hanya menggunakan proses Rie. Dalam teknik ini, lapisan PMMA di permukaan SiO2 telah digunakan sebagai topeng bahan polimer dalau proses CHF3/Ar RIE. Keputusan menunjukkan bahawa selepas 6 min kitaran punaran tugas, permukaan SiO2 adalah bertekstur dengan morfologi bentuk cincin. Teknik yang digunakan dalam fabrikasi struktur nano ini mempunyai potensi besar dalam menyediakan satu kaedah yang mudah untuk penteksturan permukaan pelbagai peranti biologi dan untuk lampiran biomolekul dan sel.
Dalam fasa terakhir kerja ini, profil negatif Si mikro saluran telah direka dengan menggunakan EBL dan proses RIE, kedua-duarya bertindak sebagai acuan untuk fabrikasi berikutnya yang polydimethylsiloxane (PDMS). A PDMS mikro saluran ditiru dari acuan tuan telah dirawat dengan menggunakan kaedah plasma udara mudah bagi peningkatan tenaga permukaan untuk proses ikatan berikutnya dan penghantaran cecair. Prosedur ini termasuk peningkatan dalam plasma tempohnya dari 10 s 30 s, yang mengurangkan sudut sentuhan air daripada 105º untuk 8º. Ini membawa kepada peningkatan kebolehbasahan permukaan untuk memudahkan penghantaran cecair dalam mikro saluran PDMS. Sementara itu, mikro saluran PDMS yang telah dirawat dengan plasma mikro mudah terikat kepada substrat kaca untuk fabrikasi peranti microfluidik. Hasil kajian menunjukkan bahawa keruntuhan bumbung mikro saluran apabila sedikit tekanan telah dikenakan ke atas mikro saluran, yang membawa kepada pembentukan nanoslits dengan 830 nm lebar dan 170 nm tinggi. Alat-alat microfluidik ini telah digunakan untuk penghijrahan kapilari molekul DNA.
-DNA dialir dalam peranti microfluidic (dan mikro saluran nanoslits) menggunakan daya kapilari tanpa apa--DNA telah ditangkap oleh mikroskop pendarfluor. Keputusan menunjukkan bahawa DNA diregangkan oleh gabungan kuasa ketegangan rerambut yang menarik penyelesaian DNA ke dalam saluran, dan mereka pantang dalam st-DNA yang terengang dalam nanoslits diukur antara 8 dan 20 μm panjang, iaitu kira-kira 40%-100% lanjutan panjang penuh. Keputusan yang amat berguna untuk masyarakat fabrikasi microfluidik yang menyediakan pendekatan yang kos efektif, mudah dan serba boleh.
- Hits: 2096